13 - 1D Dual Porosity Transport
This example corresponds to the “Example 13-1D Transport in a Dual Porosity Column With Cation Exchange” from the Phreeqc manual. It can be retrieved from the Phreeqc Website.
This example demonstrates the capabilities of PHREEQC to calculate flow in a dual-porosity medium with diffusive exchange among the mobile and immobile pores
Studies
This project contains 3 Studies.
PhreeqcStudy: “study_13 - 1D Dual Porosity Transporta”
Db used: “Phreeqc_dat” database
TITLE Example 13A.--1 mmol/L NaCl/NO3 enters column with stagnant zones.
Implicit definition of first-order exchange model.
SOLUTION 0 # 1 mmol/L NaCl
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
Na 1.0 # Na has Retardation = 2
Cl 1.0 # Cl has Retardation = 1, stagnant exchange
N(5) 1.0 # NO3 is conservative
# charge imbalance is no problem ...
END
SOLUTION 1-41 # Column with KNO3
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
K 1.0
N(5) 1.0
EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX
K+ + X- = KX
log_k 0.0
-gamma 3.5 0.015
EXCHANGE 1-41
-equil 1
X 1.e-3
END
PRINT
-reset false
-echo_input true
-status false
TRANSPORT
-cells 20
-shifts 5
-flow_direction forward
-time_step 3600
-boundary_conditions flux flux
-diffusion_coefficient 0.0
-lengths 0.1
-dispersivities 0.015
-stagnant 1 6.8e-6 0.3 0.1
# 1 stagnant layer^, ^alpha, ^epsil(m), ^epsil(im)
END
SOLUTION 0 # Original solution with KNO3 reenters
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
K 1.0
N(5) 1.0
END
TRANSPORT
-shifts 10
-punch_cells 1-20
-punch_frequency 10
END
/n
PhreeqcStudy: “study_13 - 1D Dual Porosity Transportb”
Db used: “Phreeqc_dat” database
TITLE Example 13A.--1 mmol/L NaCl/NO3 enters column with stagnant zones.
Implicit definition of first-order exchange model.
SOLUTION 0 # 1 mmol/L NaCl
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
Na 1.0 # Na has Retardation = 2
Cl 1.0 # Cl has Retardation = 1, stagnant exchange
N(5) 1.0 # NO3 is conservative
# charge imbalance is no problem ...
END
SOLUTION 1-41 # Column with KNO3
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
K 1.0
N(5) 1.0
EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX
K+ + X- = KX
log_k 0.0
-gamma 3.5 0.015
EXCHANGE 1-41
-equil 1
X 1.e-3
END
PRINT
-reset false
-echo_input true
-status false
TRANSPORT
-cells 20
-shifts 5
-flow_direction forward
-time_step 3600
-boundary_conditions flux flux
-diffusion_coefficient 0.0
-lengths 0.1
-dispersivities 0.015
-stagnant 1 6.8e-6 0.3 0.1
# 1 stagnant layer^, ^alpha, ^epsil(m), ^epsil(im)
END
SOLUTION 0 # Original solution with KNO3 reenters
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
K 1.0
N(5) 1.0
END
TRANSPORT
-shifts 10
-punch_cells 1-20
-punch_frequency 10
END
/n
PhreeqcStudy: “study_13 - 1D Dual Porosity Transportc”
Db used: “Phreeqc_dat” database
TITLE Example 13A.--1 mmol/L NaCl/NO3 enters column with stagnant zones.
Implicit definition of first-order exchange model.
SOLUTION 0 # 1 mmol/L NaCl
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
Na 1.0 # Na has Retardation = 2
Cl 1.0 # Cl has Retardation = 1, stagnant exchange
N(5) 1.0 # NO3 is conservative
# charge imbalance is no problem ...
END
SOLUTION 1-41 # Column with KNO3
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
K 1.0
N(5) 1.0
EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX
K+ + X- = KX
log_k 0.0
-gamma 3.5 0.015
EXCHANGE 1-41
-equil 1
X 1.e-3
END
PRINT
-reset false
-echo_input true
-status false
TRANSPORT
-cells 20
-shifts 5
-flow_direction forward
-time_step 3600
-boundary_conditions flux flux
-diffusion_coefficient 0.0
-lengths 0.1
-dispersivities 0.015
-stagnant 1 6.8e-6 0.3 0.1
# 1 stagnant layer^, ^alpha, ^epsil(m), ^epsil(im)
END
SOLUTION 0 # Original solution with KNO3 reenters
units mmol/l
pH 7.0
pe 13.0 O2(g) -0.7
K 1.0
N(5) 1.0
END
TRANSPORT
-shifts 10
-punch_cells 1-20
-punch_frequency 10
END
/n
Plots
This project contains 1 Plots.
Plot 1: “D.P, F.O. and F.D. Approximations”